The Axial Form Factor of the Proton

Stephen Pate New Mexico State University

The Axial Form Factor of the Proton: Physics Highlights

$$G_A^p(Q^2) = \frac{1}{2} \left[-G_A^u(Q^2) + G_A^d(Q^2) + G_A^s(Q^2) \right]$$

 G_A^p is a fundamental proton matrix element, as are the vector form factors (G_E^p, G_M^p) . The vector form factors are most easily measured in electron-nucleon scattering, while the axial form factor is most easily measured in neutrino-nucleon scattering. The full axial form factor can be measured in neutral-current neutrino elastic scattering, e.g. $vp \rightarrow vp$ or $\overline{v}p \rightarrow \overline{v}p$. The up-down part $(-G_A^u + G_A^d)$ can also be separately measured in charged-current scattering, e.g. $vn \rightarrow \mu p$ or $\overline{v}p \rightarrow \mu n$. Then the strangeness contribution, G_A^s , can be isolated, which in turn determines the full strangeness contribution to the proton spin: $\Delta S = G_A^s (Q^2 = 0)$.

Measurement of the strangeness contribution to the axial form factor is critical to our studies of nucleon substructure. It is also vital for searches for heavy dark matter particles [Ellis, Olive, & Savage, PhysRevD.77.065026].

The Axial Form Factor of the Proton: Current Status

 $(-G_A^u + G_A^d)$ measured in charged-current scattering, e.g. $vn \rightarrow \mu p$ or $\overline{v}p \rightarrow \mu n$ Many measurements over the last 40 years, with high statistics in recent experiments [K2K, T2K, MiniBooNE, SciBooNE, MINERvA]. Many recent reviews: see especially Formaggio & Zeller, Rev. Mod. Phys. 84, 1307 (2012).

 G_A^p measured in neutral-current neutrino elastic scattering, e.g. $vp \rightarrow vp$ or $\overline{v}p \rightarrow \overline{v}p$ Only a handful of measurements, and no data for $Q^2 < 0.45$ GeV². [BNL E734, MiniBooNE] As a result, we have only scarce data on the strangeness contribution.

Combining data from neutrino-nucleon and electron-nucleon experiments, the strangeness contribution to the vector and axial form factors has been determined for several points in the range $0.45 < Q^2 < 1.0 \text{ GeV}^2$. [Pate, McKee, & Papavassiliou, PhysRevC.78.015207]

Additional $vp \rightarrow vp$ data are needed for $Q^2 < 0.45 \text{ GeV}^2$ to establish the strangeness contribution to the proton spin, ΔS .

[While the polarized parton distribution function $\Delta S(x)$ has been determined in polarized leptonic deep-inelastic scattering for x > 0.005, the full integral value ΔS has not. See, for example, Chang & Peng, arXiv:1406.1260.]

The Axial Form Factor of the Proton: Future Prospects

MicroBooNE is a large ($2.3 \times 2.6 \times 10.4 \text{ m}^3$, 86-ton active volume) liquid argon time-projection chamber at Fermilab, positioned in the Booster Neutrino Beam ($E_v \sim 1 \text{ GeV}$). Neutrino-nucleon cross section measurements are among the priority physics goals for this experiment that will begin taking data early in 2015. It is ideally suited for measurement of neutral-current events as it can identify very low energy (down to ~40 MeV) isolated proton tracks.

Yes, argon is a *nucleus*. To obtain neutrino-*nucleon* cross sections from these data it will be necessary to understand the nuclear physics. Much is already known from electron- and neutrino-scattering experiments on other nuclei. There is an approved (A-) experiment at Jefferson Lab to measure the proton spectral function of argon [Benhar, Mariani, Jen, Day, Higinbotham, arxiv:1406.4080]. There is a considerable theoretical effort to understand the necessary physics [Martini et al., PhysRevC.84.055502; Ruiz Simo et al., PhysRevD.90.033012; Meucci et al., PhysRevD.88.013006; Lalakulich et al., PhysRevC.86.014614; and many more].

A simulation of the neutral-current and charged-current events at MicroBooNE, combined with electron-nucleon data, shows it is possible to determine the strangeness contribution to the axial form factor in the range $0.1 < Q^2 < 1.0 \text{ GeV}^2$ and determine ΔS to better than ± 0.05 [Pate & Trujillo, arxiv:1308.5694].

The Long Range Plan needs to recognize the importance of the opportunity to explore nucleon and nuclear substructure with medium-energy neutrino beams. In these 3 slides I have only been able to give you a small glimpse.